Arginase 1 Deficiency (ARG1-D) Presenting With Clotting Abnormalities

Laura S. Farach, MD and Deborah L. Brown, MD
McGovern Medical School and University of Texas Health Science Center at Houston, Houston, TX, United States

Introduction and Objective
- Arginase 1 Deficiency (ARG1-D) is a rare, debilitating inherited metabolic disease with significant morbidity driven by persistent high arginine levels.
- Disease manifestations typically begin to develop in early childhood and progress over time:
 - Progressive spasticity, most commonly affecting the lower limbs, is a hallmark of ARG1-D.
 - Other common manifestations include seizures, intellectual disability, developmental delay, and failure to thrive.
 - Patients may also exhibit food avoidance and/or vomiting.
- Early detection and treatment of ARG1-D is essential for delaying or decreasing progression and has been shown to have a positive impact on patient outcomes later in life.
- The aim of this presentation is to describe a patient with ARG1-D who presented with an atypical profile and was definitively diagnosed through whole-exome sequencing 2 years after initial presentation.

Presentation and Initial Assessments
- The patient is a female of Hispanic descent who presented to acute care at 3 years of age because of new-onset seizures.
 - Upon admission, global developmental delay, intellectual disability, failure to thrive, and proteinuria were evident.
 - No seizures and prolonged prothrombin time prompted referral to hematology for further evaluation.
- Several abnormalities were detected during workup (Table 1). Vitamin K deficiency was considered but the patient's prolonged prothrombin time did not decrease upon oral or subcutaneous vitamin K administration.
 - Suspicions of a vitamin K receptor disorder prompted referral to genetics.

Diagnosis
- Time from presentation to diagnosis was nearly 2 years owing to a combination of the patient's presentation and access to testing (Figure 1):
 - An inborn error of metabolism (IEM) was not high on the differential at this time due to the patient's biochemistry and history of normal newborn screens.
 - Based on access, chromosomal microarray and gene panels for congenital disorders of glycosylation and comprehensive glycogen storage disease panels were ordered; results did not suggest a diagnosis.
 - Whole-exome sequencing ultimately revealed a homozygous pathogenic variant in *ARG1* (c.466G>C) indicating a diagnosis of ARG1-D. Amino acid testing confirmed the ARG1-D phenotype (plasma arginine, 607 μmol/L; reference range, 18–127 μmol/L).

Figure 1: Diagnostic Journey

<table>
<thead>
<tr>
<th>2010</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative (ARG1-D not on panel)</td>
<td>Single gene testing and/or WES (access restricted)</td>
<td>Long contiguous regions of homozygosity (chromosomes 5 & 6)</td>
<td>DDHA (heterozygous VUS)</td>
</tr>
<tr>
<td>NBS</td>
<td>Medical Genetics</td>
<td>Chromosomal microarray ordered</td>
<td>High αPiA</td>
</tr>
<tr>
<td>NBS</td>
<td>Hematology</td>
<td>Presented</td>
<td>AA panel</td>
</tr>
<tr>
<td>Birth</td>
<td>Presentation</td>
<td>(based on access)</td>
<td>Genes panels ordered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(continued restricted access to WES)</td>
<td>ARG1 (homozygous pathogenic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Definitive ARG1-D diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOR initiated</td>
</tr>
</tbody>
</table>

References: NBS, newborn screening; αPiA, plasma α1-antitrypsin; SOR, standard of care; VUS, variant of unknown significance; WES, whole-exome sequencing.