Neural correlates of working memory in early-treated adult patients with Phenylketonuria

Stephanie Abgottspon, Raphaela Muri, Shawn Christ, Michel Hochuli, Martin Zbinden, Nicolas Langer, Roman Trepp and Regula Everts

1Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland
2Graduate School for Health Sciences, University of Bern, Switzerland
3Support Centre for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, University Hospital Inselspital, University of Bern, Bern, Switzerland
4Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
5Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
6Division of Neuropaediatrics, Development and Rehabilitation, Inselspital Bern, Children's University Hospital

BACKGROUND

• Phenylketonuria (PKU) is an inborn error of metabolism affecting the conversion of phenylalanine (Phe) to tyrosine.¹
• Despite early initiated treatment and a Phe-restricted diet, there is a high variability in terms of cognitive outcome in early-treated adults with PKU.²
• Functional magnetic resonance imaging (fMRI) provides insights into functional brain organization in individuals with early-treated PKU.³
• fMRI of working memory as a possibility to study neural activation in the fronto-parietal working memory network and its associations with task performance and metabolic parameters.

AIM

• Examine working memory performance and related neural activation in early-treated adults with PKU
• Explore the relationship between neural activation and task performance
Neural correlates of working memory in early-treated adult patients with Phenylketonuria

METHODS

Study design
- Cross-sectional study
- Inclusion criteria: diagnosis of PKU after positive newborn screening, initiation of Phe-restricted diet within 30 days of life, age > 18 years

Participants
- 20 early treated adults with PKU (mean age: 31.4 ± 9.0 years)
- 40 healthy controls (mean age: 29.8 ± 8.2 years)

Assessments
- Blood sampling: Phe, tyrosine, and tryptophan concentration
- fMRI of working memory: visuospatial n-back task

RESULTS

- fMRI task performance: lower task accuracy \(F(1,56) = 7.541, \ p = .008\) but comparable reaction times \(F(1,56) = .168, \ p = .684\) in the 3-back condition in the PKU group compared to the control group.
- No associations between task performance and neural activation.
- Region-of-Interest analyses: See figures 1 and 2.

Figure 1. Regions of the fronto-parietal working memory network
Regions are derived from the NeuroSynth database. Light green = left insula; light blue = right insula; dark green = right inferior frontal gyrus; yellow = left middle frontal gyrus; purple = left middle frontal gyrus; dark blue = right middle frontal gyrus; red = right superior frontal gyrus; brown = left inferior parietal gyrus; orange = right inferior parietal gyrus.
Neural correlates of working memory in early-treated adult patients with Phenylketonuria

RESULTS

- Our results demonstrate **subtle alterations** in performance and neural activation, particularly in frontal regions of the working memory network in early-treated adult patients with PKU.
- These findings align with previous studies indicating that patients with PKU display **changes in functional parameters** of the brain despite early-initiated treatment.

CONCLUSION

- Our results demonstrate subtle alterations in performance and neural activation, particularly in frontal regions of the working memory network in early-treated adult patients with PKU.
- These findings align with previous studies indicating that patients with PKU display changes in functional parameters of the brain despite early-initiated treatment.

REFERENCES