Development of MTHFR modulating compounds for treatment of MTHFR deficiency

Linnea Blomgren¹, Gustavo A. Bezerra², Alexander Holenstein¹, William R. Foster², Peter J. Brown³, Minkui Luo⁴,⁵, Wyatt W. Yue² and D. Sean Froese¹

¹ Division of Metabolism and Children’s Research Center, University Children’s Hospital Zürich, University of Zürich, Zürich, Switzerland
² Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
³ Structural Genomics Consortium, University of Toronto, Toronto, Canada
⁴ Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
⁵ Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, USA

Introduction

Methylenetetrahydrofolate reductase (MTHFR) deficiency

- Caused by single nucleotide polymorphisms
- Mild reduced enzyme activity
- Appear in late childhood and adulthood
- Associated with multifactorial diseases

- Autosomal recessive
- Residual enzyme activity <20%
- Inborn error (ca 200 patients known today)
- Neuropsychiatric diseases, possibly fatal

AIM: To design MTHFR activity modulating compounds based on the structures of SAM (inhibition) and SAH (dis-inhibition)

References

Approach

Study of the structure-function relationship of SAM inhibition and SAH dis-inhibition to optimise binding and fine tune level of inhibition

Binding studies

Differential scanning fluorimetry S-SKI-72 to stabilise hsMTHFR$_{RD}$ stronger than SAM and SAH

<table>
<thead>
<tr>
<th>Compound</th>
<th>MeltT (°C)</th>
<th>R squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>47.95</td>
<td>0.9933</td>
</tr>
<tr>
<td>TAM-4-61</td>
<td>50.45</td>
<td>0.9922</td>
</tr>
<tr>
<td>TAM-4-59</td>
<td>50.45</td>
<td>0.9912</td>
</tr>
<tr>
<td>Sinfungin</td>
<td>50.85</td>
<td>0.9984</td>
</tr>
<tr>
<td>WZ-16</td>
<td>51.75</td>
<td>0.9855</td>
</tr>
<tr>
<td>SAM</td>
<td>52.85</td>
<td>0.9912</td>
</tr>
<tr>
<td>SAH</td>
<td>56.15</td>
<td>0.9934</td>
</tr>
<tr>
<td>[S]-SKI-72</td>
<td>58.05</td>
<td>0.9933</td>
</tr>
</tbody>
</table>

Surface plasmon resonance show S-SKI-72 bind with stronger affinity to hsMTHFR$_{RD}$ than SAM

Published results

Activity studies

In vitro inhibition assay using hsMTHFR and derivatives of SAM show structures affecting inhibition potency and efficacy

1) R-stereochemistry of amino-group increase inhibitory efficacy

2) Removal of methyl-group does not guarantee dis-inhibition

3) Carboxyl-group substitution affects both potency and efficacy

Conclusion

- Structure of S-SKI-72 has been found to bind and stabilised hsMTHFR_{RD} stronger than SAM, and resulting in partial inhibition of hsMTHFR.
- Structural modification to S-SKI-72 have been identified increasing potency and effect the level of inhibition