Ultra-rapid genomic diagnosis offers treatment options for Wolman Disease and also reveals complex underlying genetic mechanism

Caitlin Forwood¹, Rebecca Macintosh¹, Jacqui Russell¹, Jason Pinner¹,², Zornitza Stark²,³, Sebastian Lunke²,³, Elizabeth Emma Palmer¹,³, Richard Mitchell⁴,⁵, John Christodoulou⁶,⁷ and Kaustuv Bhattacharya¹,⁸

1 – Centre for Clinical Genetics, Sydney Children’s Hospital Randwick
2 – Australian Genomics Health Alliance, Melbourne, VIC, Australia
3 – School of Women & Children’s Health, University of NSW, Sydney NSW Australia
4 – Kids Cancer Centre, Sydney Children’s Hospital Randwick
5 – Genetic Metabolic Disorders Service, The Children’s Hospital at Westmead
6- Murdoch Children’s Research Institute, Melbourne
7- University of Melbourne, Melbourne
8- Genetic Metabolic Disorders Service, The Children’s Hospital at Westmead

No conflict of interests to declare.
Grateful acknowledgement to Sydney Children’s Hospital for funding conference attendance.

Background

• Deficiency of lysosomal acid lipase (LAL) - prevalence of 1 in 500,000 ¹
• Spectrum ranging from infantile-onset WD to later-onset cholesterol ester storage disease (CESD) ²
• CEs & TGs build up – leading to faltering growth, vomiting, steatorrhoea with diarrhoea and abdominal distension, can progress to anaemia and thrombocytopenia ¹⁻⁴
• Subcapsular adrenal calcifications- pathognomonic ⁵
• Was universally fatal in childhood until 2015 when ERT with sebelipase alfa was approved for use in the USA and EU ⁶
• Recent clinical trials of ERT with or without haematopoietic stem cell transplant have resulted in long term survivors of early onset forms ⁶,⁷

Case report – presentation

• 2-month-old infant presented with FTT, fever and lethargy, abdominal distension with marked hepatosplenomegaly
• Investigations:
 • sterile CSF pleocytosis
 • pancytopenia
 • Hyperferritinaemia
• Haemophagocytic lymphohistiocytosis (HLH) due to progressive sepsis and liver failure
• WD was suspected due to marked adrenal calcification on chest X-Ray with HLH a known secondary association

Image 1: Chest XRay showing marked adrenal calcification (arrows)
Genetic Results

• Rapid genomic sequencing AGHA Acute Care Project
• Within four days trio WGS: homozygous likely pathogenic missense variants in LIPA: c.524A>C; p.(Gln175Pro)
• Further analysis - paternally inherited chromosome 10 paternal isodisomy.
• WD not previously reported from UPD, recognised as cause for other autosomal recessive conditions

HLH and WD

• HLH described in several cases of WD
• Age of onset two weeks to twenty-one months, mostly around three months
• CEs form crystals which activate the inflammasome resulting in sustained acquired HLH
• Loss of cholesterol for steroidogenesis can lead to adrenal insufficiency

The diagnosis of HLH can be established if either 1 or 2 below is fulfilled:

1. A molecular diagnosis consistent with HLH
2. Diagnostic criteria for HLH are fulfilled (five out of the eight criteria below):
 1. Fever
 2. Splenomegaly
 3. Cytopenias (affecting ≥ 2 lineages in the peripheral blood):
 - Hemoglobin <90 g/L (in infants<4 weeks: hemoglobin <100 g/L)
 - Platelets <100,000/μL
 - Neutrophils <1000/μL
 4. Hypertriglyceridermia and/or hypofibrinogenemia:
 - Fasting triglycerides ≥ 265 mg/dL
 - Fibrinogen ≤ 1.5 g/L
 - Hemophagocytosis in bone marrow or spleen or lymph nodes
 5. Low or absent NK-cell activity
 6. Ferritin ≥ 500 μg/L
 7. Soluble CD25 ≥ 2400 U/L

Supportive clinical criteria include neurologic symptoms and cerebrospinal fluid pleocytosis, conjugated hyperbilirubinemia, and transaminitis, hypoalbuminemia and hyponatremia

Image 2: Table showing the Diagnostic criteria for HLH from
ERT and Outcome

- International experts were consulted on the management of WD
- Treatment with sebelipase alfa ERT initiated
- Due to issues with fat metabolism, avoided intralipid, ceased breastfeeding and low fat formula Vivonex T.E.N introduced
- Etoposide ceased, high dose dexamethasone continued
- Two doses of weekly ERT administered
- Progression of illness – fulminant liver failure, hyperammonaemia and sepsis, coagulopathy, portal hypertension and refractory gastrointestinal bleeding
- Two and a half weeks after diagnosis the infant died, aged 3 months due to underlying critical illness

Conclusion

In this case ultra-rapid genomic sequencing led to a diagnosis of WD enabling treatment with ERT. The case also highlights the association of WD with HLH. Furthermore, the genetic mechanism of uniparental disomy was identified.

Acknowledgements

Thank you to:
- Our patient’s family for their consent to present the case
- AGHA for the opportunity to obtain timely results and initiate ERT
- Alexion for providing sebelipase alfa on compassionate grounds
- All the clinicians and allied health involved in the case - Haematology, Immunology, Infectious Disease, Paediatric and PICU teams
- Our genetic and metabolic colleagues including Dr Arthavan Selvanathan
- The dietetics staff at SCHN Jessica Gleeson, Kiera Batten and Sue Thompson
- Dr Simon Jones and his team for their expertise in Wolman Disease and ERT
References

