A Phase I/II multicenter gene therapy clinical study for Fabry Disease

Jaya Ganesh, 1 Ozlem Golen-Alpan, 2 Robert Hopkins, 3 John Bernat, 4 Srvan Jaggumani, 5 Cristobal Passalaqua, 1 Bernard Souberbielle, 6 Bettina M. Cockroft 6
1 The Icahn School of Medicine at Mount Sinai, New York, NY, USA; 2 Cysomol and Rare Disorders Research and Treatment Center, Fairfax, VA, USA; 3 University of Cincinnati College of Medicine, Cincinnati, OH, USA; 4 University of Iowa, Iowa City, IA, USA; 5 Sangamo Therapeutics, Inc., Brisbane, CA, USA; 6 Presenting author

FABRY DISEASE

- Fabry disease is an X-linked lysosomal storage disease caused by mutations in the GLA gene, which encodes the lysosomal enzyme alpha-galactosidase A (α-Gal A).
- Lack of α-Gal A activity results in the progressive, systemic accumulation of its primary substrate, globotriaosylceramide (Gb3), and its deacetylated sialic acid form, globotriaosylsphingosine (lyso-Gb3).
- Long-term accumulation of these substrates leads to renal, cardiac, and/or cerebrovascular disease, with reduced life expectancy.
- Depending on the GLA mutation and residual α-Gal A enzyme level, the disease presents as classic early-onset Fabry disease or as an attenuated phenotypic form later in life.
- Patients with amenable mutations may be managed with oral chaperone therapy.

STUDY DESIGN

- For this open-label, first-in-human clinical trial with ST-920, a recombinant adeno-associated virus (AAV2/6) vector containing the human GLA GNA which encodes for the enzyme α-Gal A.
- The purpose of this study is to evaluate the safety and tolerability of ascending doses of ST-920.
- The constant production of α-Gal A in humans should lead to reduction and potential clearance of Fabry disease substrate Gb3 and lysoGb3 from target organs.
- The same AAV vector with liver-targeted gene delivery has been administered previously in a single gene therapy infusion resulted in supraphysiological expression of plasma α-Gal A activity, reaching stable levels by day 14.
- Gb3/lysoGb3 levels in plasma, liver, and other tissues reached near-normal levels by 3 months after administration.
- A potentially improved pharmacokinetic profile of gene therapy could also result in improved cross-correction via mannose-mediated uptake (cross-correction) and reduced production of antibodies against the enzyme, as has been demonstrated in mouse models of Fabry and Pompe disease.1,2

RATIONAL FOR GENE THERAPY IN FABRY DISEASE

- Unmet medical need with current standard of care including ERT:
 - Short half-life necessitates a lifetime of infusions every other week.
 - A lack of α-Gal A activity results in the progressive, systemic accumulation of its primary substrate, globotriaosylceramide (Gb3), and its deacetylated sialic acid form, globotriaosylsphingosine (lyso-Gb3).
 - Long-term accumulation of these substrates leads to renal, cardiac, and/or cerebrovascular disease, with reduced life expectancy.
- The purpose of this study is to evaluate the safety and tolerability of ascending doses of ST-920.
- Patients with amenable mutations may be managed with oral chaperone therapy.

ENDPOINTS

- Primary endpoint: Incidence of treatment-emergent adverse events
- Additional safety evaluations will include the following:
 - Renal function, laboratory chemistry, and liver tests, vital signs, electrocardiogram, and echocardiogram.
 - Serial α-Gal A enzyme and urinary Gb3 levels.
 - Frequency of ERT infusion
 - ERT treatment response
 - Cardiac function and left ventricular mass, measured by cardiac MRI
 - Estimateglomerular filtration rate (eGFR) 5 mL/min/1.73 m²
 - New York Heart Association Class III or higher
 - Contradication to death
 - Active viral infection
 - Currently receiving dialgastat

INVESTIGATIONAL SITES

Site/Principal Investigator

- 1. The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bernard Souberbielle, MD, PhD
- 2. University of Cincinnati College of Medicine, Cincinnati, OH, USA; John Bernat, MD
- 3. University of Iowa, Iowa City, IA, USA; Robert Hopkins, MD
- 4. University of Washington Medical Center, Seattle, WA, USA; Dr. Goker Alpan, MD
- 5. New York University, New York, NY, USA; Lea Leavitt AD, Konkle BA, Stine K, et al.
- 6. Sangamo Therapeutics, Inc., CA, USA; Dr Hughes

STUDY STATUS

- Two patients were dosed in cohort 1. Two patients have been dosed in cohort 2, and one patient has been dosed in cohort 3.

REFERENCES

ACKNOWLEDGMENTS

- We would like to thank the Fabry patients who have generously agreed to be scheduled and participate in the clinical trial. We would also like to thank the clinical sites, principal investigators, and our team for their participation in the ST-920 clinical trial and for their hard work initiating this study, as well as the Sangamo Bioanalytical Development and Clinical Development teams.
- This study is sponsored by Sangamo Therapeutics.

DISCLOSURES

BMC and CP are employees of Sangamo Therapeutics. ISR and SI were employees of Sangamo Therapeutics at the time of the study.