First-in-human Intracisternal Dosing of RGX-111
(Adeno-associated Virus 9 / Human Alpha-l-Iduronidase) for a 20-Month-old Child with Mucopolysaccharidosis Type I (MPSI): 1 Year Follow-up

Raymond Wang MD, Tammam Beydoun DO, Nina Movsesyan PhD, Shih-Hsin Kan PhD, Mery Taylor PhD, Winnie Stockton PharmD, Igor Nestrasil MD, Bryan Pukenas MD, Michelle Gilmore, PhD, Yoonjin Cho PhD, Paulo Falabella MD, Marie-Laure Névoret MD

1CHOC Children’s Hospital, 2University of Minnesota School of Medicine, Department of Pediatrics, 3University of Pennsylvania School of Medicine, Department of Radiology, 4REGENXBIO

Introduction

MPS I is a lysosomal storage disorder caused by mutations in the IDUA gene and resultant deficiency of lysosomal α-L-iduronidase (IDUA) enzyme(1).

Patients with severe MPS I have mutations encoding completely inactive IDUA enzyme and have early-onset developmental delay and cognitive regression in addition to multisystemic manifestations(2).

Treatment for severe MPS I involves intravenous recombinant human IDUA (rhIDUA) enzyme infusions followed by stem cell transplant (SCT). However, SCT carries risks of engraftment syndrome, graft failure, graft-versus-host disease, death, and occasionally incomplete correction of neurodevelopmental manifestations(3).

RGX-111, an investigational gene therapy, was administered intracisternally to a 20-month-old child with severe MPS I (Hurler) under a single-patient investigator-initiated IND.

RGX-111

RGX-111 (AAV9.CB7.hIDUA) is a recombinant AAV9 capsid containing a hIDUA expression cassette. Preclinical studies in feline and canine models indicated RGX-111 can increase IDUA protein expression in a robust and rapid manner, resulting in near-complete correction of biochemical changes resulting from IDUA deficiency(4,5).

Intracisternal administration in canines and non-human primates was well-tolerated and resulted in efficient transduction of RGX-111 with sustained expression for nearly 4 years(5,6).

References

3. Aldenhoven et al. 2015, Blood. 125(13):2164-2172
Patient History, Treatment, and Post RGX-111 Evaluations to Date

<table>
<thead>
<tr>
<th>Months</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
</table>

2 Months
- **First Evaluation at CHOC**
- Family History: Patient is 5th of 5 siblings. Three prior siblings diagnosed with MPS I. One is still alive but did not receive ERT. Two siblings died of ERT-related complications.
- **Biochemical & Molecular Testing**
 - OPA p.R628*;R632* known pathogenic mutation
- **Biomarkers**
 - Elevated uric total GAGs
 - Elevated urinary heparan and dermatan sulfate GAGs
 - Deficient L-Iduronidase enzyme
- **Diagnostic evaluations**
 - IAM autopsy constellation
 - Hepatosplenomegaly
- **ERT started at 6 months of age (standard dose 0.58mg/kg/week)**
- **Plan is to continue ERT throughout 2-year RGX-111 study follow-up**
- **Successful bilateral inguinal herniorrhaphy**
- **Walking unsupported, able to feed himself, has 3 words**
- **No developmental regression noted**
- **Demonstrates normal growth (length 20th percentile, weight 90th percentile, head circumference 90th percentile)**
- **Macrocephaly and physical examination findings are consistent with symptoms of MPS I that current ERT treatment is unable to fully mitigate**

<table>
<thead>
<tr>
<th>Months</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
</table>

20 Months
- **Gene Therapy Administered**
- **Biomarkers (CSF Heparan sulfate and IDUA activity) previously reported**
- **Vector: RGX-111 (AAV9 + IDUA)**
- **(7 days before administration) Screening MRI to determine IC administration feasibility. 8-brain mass for gene therapy dose calculation**
- **Dose: 1.3 x 10¹⁰GCs/kg brain mass**
- **Route of Administration: Image-guided intracranial injection**
- **Immune-suppression Regimen**
 - Methylprednisolone one-time prior to RGX-111 administration
 - Prednisone was gradually tapered to discontinuation by 12 weeks post RGX-111 administration
 - Tacrolimus was gradually tapered over 8 weeks to discontinuation by 32 weeks post RGX-111 administration
 - Graft was discontinued at 48 weeks post RGX-111 administration

23 Months
- (12 Weeks Post RGX-111 Administration)

29 Months
- (32 & 33 Weeks Post RGX-111 Administration)
- **Biomarkers (CSF heparan sulfate and neurodevelopment assessment) previously reported**
- **Safety: No AEs related to administration of study drug (December 27, 2020)**
- **CNS Biomarker: Heparan sulfate concentration, IDUA activity**
- **Neurodevelopment: (BEDI-78) cognitive, language & motor domains**
- **Systemic Biomarker: urine GAGs**
- **Biochemical Investigation: normal at week 52 follow-up**
Results

Safety

RGX-111 is reported to be well-tolerated in this patient with no administration or study-drug related SAEs (as of December 27, 2020)

Biochemistry

- There was a durable reduction in CSF heparan sulfate up to 59 weeks after RGX-111 administration
- CSF IDUA activity was below the limit of detection at baseline and week 59; detectable at week 12. (data not shown)

Overall sustained decrease in total urine GAG levels

Neurodevelopment Function

Age Equivalence (Cognitive) Bayley Scales of Infant and Toddler Development, 3rd Edition (BSID-III)

Patient demonstrated continued cognitive development within a normal range

Language and Motor Domains

Patient demonstrated continued language and motor skills acquisition 60 weeks post RGX-111 dosing (~35 months of age).
Conclusions

RGX-111 delivered via intracisternal administration has been well-tolerated with no administration or study-drug related SAEs (December 27, 2020).

CSF HS demonstrated a durable reduction up to 59 weeks post RGX-111 administration in this patient.

Urine total GAGs demonstrated an overall sustained decrease post RGX-111 administration in the patient.

Cognitive development continued within a normal range as measured using the BSID-III at 60 weeks post RGX-111 administration (~35 months of age). Language and motor skill acquisition also continued through 60 weeks post RGX-111 administration.